
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 10: Maybe and Monads
o Dealing with Exceptions with Maybe
o The Maybe Monad
Next Time:
o Monads as Contextual Computation
o List Monad and List Comprehensions

Reading: Hutton 12.3

Dealing with Errors in Evaluation
The messiest part of any language is always how to deal with fatal errors
deep in the middle of some computation.

Let’s use the following language (Hutton p.164) for doing division to see
why this is so and how Haskell deals with this...

data Expr = Val Int | Div Expr Expr

eval :: Expr -> Int
eval (Val n) = n
eval (Div x y) = (eval x) `div` (eval y)

Main> eval (Div (Val 8) (Val 4)) -- 8/4 => 2
2

-- (10/3)/2 => 1
Main> eval (Div (Div (Val 10) (Val 3)) (Val 2))
1

But of course it is possible to get an
error if we divide by zero:

Main> eval (Div (Val 8) (Val 0)) -- 8/0 => error!
*** Exception: divide by zero

And this can happen anywhere:

Main> eval (Div (Val 8) -- 8/(6/((12/0)/(6/3))
(Div (Val 6)

(Div (Div (Val 12)
(Val 0))

(Div (Val 6)
(Val 3))))

*** Exception: divide by zero

Dealing with Errors in Evaluation

You are deep in the recursion and something
goes wrong, what to do?

Exceptions are basically a way of freaking out
and bailing on the whole damn thing:

eval(Div(Val 8)(Div(Val 6)(Div(Div(Val 12)(Val 0))(Div(Val 6)(Val 3))))
eval (Val 8)
=> 8
eval (Div(Val 6)(Div(Div(Val 12)(Val 0))(Div(Val 6)(Val 3))))

eval (Val 6)
=> 6

eval (Div(Div(Val 12)(Val 0))(Div(Val 6)(Val 3))))
eval (Div(Val 12)(Val 0))

eval (Val 12)
=> 12
eval (Val 0)
=> 0

eval 12 `div` 0
exception “divide by 0” Not very graceful....

Dealing with Errors in Evaluation

These are call exceptions, and most languages have some way of dealing
with this, and it is always a complete pain in the neck!

Dealing with Errors in Evaluation: Exceptions

Haskell also has exceptions, and you can generate them yourself using the
function:

eval :: Expr -> Int
eval (Val n) = n
eval (Div x y) = case eval x of

0 -> error "Run Away!!!"
n -> (eval x) `div` n

Main> eval (Div (Val 2) (Val 0))
*** Exception: Run Away!!!
CallStack (from HasCallStack):

error, called at Main.hs:39:28 in main:Main

But we would like a graceful way of dealing with errors, where we are in control
throughout the crisis...

Dealing with Errors in Evaluation: Exceptions

error :: String -> a

Maybe to the rescue!

data Maybe a = Nothing | Just a

data Expr = Val Int | Div Expr Expr

eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = case eval x of

Nothing -> Nothing
Just n -> case eval y of

Nothing -> Nothing
Just 0 -> Nothing
Just m -> Just (n `div` m)

Main> eval (Div (Val 12) (Val 4))
Just 3
Main> eval (Div (Val 12) (Val 0))
Nothing

Dealing with Errors in Evaluation: Maybe

But is this really any better? For each argument to a function you would need to write a
nested case and check each time for Nothing:

eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = case eval x of

Nothing -> Nothing
Just n -> case eval y of

Nothing -> Nothing
Just 0 -> Nothing
Just m -> Just (n `div` m)

We call this "cascading cases" or a "staircase of cases"

Dealing with Errors in Evaluation: Maybe

What if you had to check five arguments to a function?

addAll a b c d e =
case eval a of

Nothing -> Nothing
Just a’ ->

case eval b of
Nothing -> Nothing
Just b’ ->

case eval c of
Nothing -> Nothing
Just c’ ->

case eval d of
Nothing -> Nothing
Just d’ ->

case eval e of
Nothing -> Nothing
Just e’ -> Just (a’+b’+c’+d’+e’)

Not sure this is any better!! Can we abstract away all this syntax? (Yes, of course...)

Dealing with Errors in Evaluation: Maybe

You can think of it this paradigm as wrapping everything in a Maybe, and during a computation
of expressions e1, e2, e3, etc., we pass along correct values using Just but jump off and pass
Nothing back when we get to an error:

e1 => f1 (Just e1) => f2 (Just e2) => f3(Just e3) => f4 Nothing => f5 Nothing =>

Dealing with Errors in Evaluation: Maybe

Just

e1

Just

e2

Just

e3

Nothing Nothing

e3 divides by 0
!

...Nothing good can come
from this computation....

.... All good, no division by 0 ...

f2 f3

f5
f4

e1

Nothing Nothing

The Maybe Monad
This can be thought of as adding context around the referentially transparent "main line" of the
computation, the context being a the Maybe data type containing the value you are computing.

Just

e1

Just

e2

Just

e3

e1

The Maybe Monad
How to compute with Maybe values? We could write this explicitly:

Main> plus (Just 4) (Just 5)
Just 9

Main> divide (Just 4) (Just 2)
Just 2

Main> divide (Just 4) (Just 0)
Nothing

But why evaluate both arguments?

If the first argument is Nothing, the
whole computation return a Nothing,
without evaluating the second argument.

The Maybe Monad
So come back to our "cascading cases" or a "staircase of cases":

How to
put all the
details of
Maybe into
the
background?

The Maybe Monad
How to make this paradigm–defining a data type to pass along relevant
information about a compution—into a useful programming tool?

There are two issues:

A. How do we replace a bunch of tedious, almost-identical pieces of code with an
abstraction?

B. How do we fit this abstraction into the "Haskell Ecosystem" via a type class?

A. How do we replace a sequence of tedious, almost-identical pieces of code with an
abstraction?

Here is the problem we want to abstract away:
o Unwrapping values by pattern matching
o Wrapping values back up into a Just or a Nothing

eval :: Expr -> Maybe Int
eval (Val n) = Just n
eval (Div x y) = case eval x of

Nothing -> Nothing
Just n -> case eval y of

Nothing -> Nothing
Just 0 -> Nothing
Just m -> Just (n `div` m)

The Maybe Monad

Just

n

Just

kunwrap by
pattern matching

wrap result with a
constructor

div
n

Apply function
Maybe Integer Maybe IntegerJust

m

unwrap
by pattern
matching
m

Maybe Integer

So we have to figure out how to wrap and unwrap a data value held inside a Maybe without
having to think about it.

We want to focus on the computation of the value in the foreground, and keep the details of
wrapping and unwrapping in the background:

The Maybe Monad

Just

e1 unwrapwrap f1e1

Apply function
f1 :: Maybe a -> Maybe b

Maybe a

Nothinge1
Just

e2 unwrapwrap f2

Maybe b

Apply function
f2 :: Maybe b -> Maybe c

wrap unwrap

Maybe c

Just

e1
g1

Maybe a

Nothing
Just

e2
g2

Maybe b Maybe c

Apply function
g1 :: a -> Maybe b

Apply function
g2 :: b -> Maybe c

e2

e1

Put value in
Maybe context.

But notice that every time we have seen the Maybe type used, it is used as a return type,
because something may go wrong with the processing of the inputs. A good example is
looking up a key in a map: if the key is not there, you return Nothing to indicate
failure:

The Prelude provides a version of lookup that works on a list of key-value pairs:

Main> :t lookup
lookup :: Eq a => a -> [(a, b)] -> Maybe b

Data.Map provides a more efficient version based on balanced trees:
Main> import Data.Map

Data.Map> :t Data.Map.lookup
Data.Map.lookup :: Ord k => k -> Map k a -> Maybe a

Punchline: We want to be able to deal with functions that take "normal" values as arguments, but
return a Maybe type. We will see that by currying, we really only need to account for functions
of the following type:

a -> Maybe b

Maybe Monad

So we really only need (1) a basic function to wrap a value in a Maybe, and (2) a
function to apply a function of type (a -> Maybe b) to a Maybe value:

(1) The first is called "return":
return :: a -> Maybe a
return x = Just x

(2) The second is called "bind" and is given as an infix operator:
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
mx >>= f = case mx of

Nothing -> Nothing
Just x -> f x

incm :: Integer -> Maybe Integer
incm x = Just (x+1)

Main> (Just 5) >>= incm
Just 6

Maybe Monad

Look familiar?

Main> return 6
Just 6
Main> return True
Just True

return :: a -> Maybe a
return x = Just x

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
mx >>= f = case mx of

Nothing -> Nothing
Just x -> f x

Maybe Monad

Just

e1
g1

Maybe a

Nothing
Just

e2
g2

Maybe b Maybe c

Apply function
g1 :: a -> Maybe b

Apply function
g2 :: b -> Maybe c

e1

return e1 >>= g1 >>= g2

Put value in
Maybe context.

B. How do we fit this abstraction into the "Haskell Ecosystem" via a type class?

The Monad typeclass is defined in the Prelude as follows:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a

Any data type which is an instance of this class must provide implementations of these, so here is
Maybe:

instance Monad Maybe where

-- return :: a -> Maybe a
return x = Just x

-- (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
mx >>= f = case mx of

Nothing -> Nothing
Just x -> f x

The Monad Typeclass: A Clean Interface to Computing in Context

m here is a type
constructor with
one parameter,
just as with
Functors.

Now let's look at some code to see how this all works in practice.....

